Hadamard Product of Simple Sets of Polynomials in Cn
نویسنده
چکیده
In this paper we give some convergence properties of Hadamard product set of polynomials defined by several simple monic sets of several complex variables in complete Reinhardt domains and in hyperelliptical regions too.
منابع مشابه
Bernstein's polynomials for convex functions and related results
In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of Hermite-Hadamard inequality for convex functions.
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملHadamard Factorization of Hurwitz Stable Polynomials
The Hurwitz stable polynomials are important in the study of differential equations systems and control theory (see [7] and [19]). A property of these polynomials is related to Hadamard product. Consider two polynomials p, q ∈ R[x]: p(x) = anx n + an−1x n−1 + · · ·+ a1x + a0 q(x) = bmx m + bm−1x m−1 + · · ·+ b1x + b0 the Hadamard product (p ∗ q) is defined as (p ∗ q)(x) = akbkx + ak−1bk−1x + · ...
متن کاملSome Integral Inequalities of Hermite-Hadamard Type for Multiplicatively s-Preinvex Functions
In this paper, we establish integral inequalities of Hermite-Hadamard type for multiplicativelys-preinvex functions. We also obtain some new inequalities involving multiplicative integralsby using some properties of multiplicatively s-preinvex and preinvex functions.
متن کاملArithmetic Circuits and the Hadamard Product of Polynomials
Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. • We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is comple...
متن کامل